Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities.

نویسندگان

  • Gary Shambat
  • Yiyang Gong
  • Jesse Lu
  • Selçuk Yerci
  • Rui Li
  • Luca Dal Negro
  • Jelena Vucković
چکیده

Optical fiber tapers are used to collect photoluminescence emission at approximately 1.5 microm from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. In the experiment, photoluminescence collection via one arm of the fiber taper is enhanced 2.5 times relative to free space collection, corresponding to a net collection efficiency of 4%. Theoretically, the collection efficiency into one arm of the fiber-taper with this material system and cavity design can be as high as 12.5%, but the degradation of the experimental coupling efficiency relative to this value mainly comes from scattering loss within the short taper transition regions. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength and collection efficiency is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities.

One dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 microm is studied at cryogenic and room temperatures at different optical pump powers. The resonators demonstrate Purcell enhanced absorption and emission rates, also confirmed by time resolved measurements. Resonances exhibit linewidt...

متن کامل

Silicon Based Photonic Crystal Light Sources a Dissertation Submitted to the Department of Electrical Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Efficient light generation on silicon is desirable for a variety of applications because of its low fabrication cost relative to III/V semiconductors and because it will enable monolithic integration with electronic components on the same Si platform. We studied silicon-rich silicon nitride with emission in the visible and erbium-doped silicon nitride (Er:SiNx) with emission at 1540 nm. Both of...

متن کامل

Fiber-coupled microsphere laser.

We demonstrate a 1.5-microm - wavelength fiber laser formed by placement of glass microsphere resonators along a fiber taper. The fiber taper serves the dual purpose of transporting optical pump power into the spheres and extracting the resulting laser emission. A highly doped erbium:ytterbium phosphate glass was used to form microsphere resonant cavities with large gain at 1.5microm . Laser th...

متن کامل

C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities.

We report on integrated erbium-doped waveguide lasers designed for silicon photonic systems. The distributed Bragg reflector laser cavities consist of silicon nitride waveguide and grating features defined by wafer-scale immersion lithography and a top erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The resulting inverted ridge waveguide yields high opt...

متن کامل

Fiber - coupled nanophotonic devices for nonlinear optics and cavity QED

The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2010